A Framework for Out of Memory SVD Algorithms
نویسندگان
چکیده
Many important applications – from big data analytics to information retrieval, gene expression analysis, and numerical weather prediction – require the solution of large dense singular value decompositions (SVD). In many cases the problems are too large to fit into the computer’s main memory, and thus require specialized out-of-core algorithms that use disk storage. In this paper, we analyze the SVD communications, as related to hierarchical memories, and design a class of algorithms that minimizes them. This class includes out-of-core SVDs but can also be applied between other consecutive levels of the memory hierarchy, e.g., GPU SVD using the CPU memory for large problems. We call these out-of-memory (OOM) algorithms. To design OOM SVDs, we first study the communications for both classical one-stage blocked SVD and two-stage tiled SVD. We present the theoretical analysis and strategies to design, as well as implement, these communication avoiding OOM SVD algorithms. We show performance results for multicore architecture that illustrate our theoretical findings and match our performance models.
منابع مشابه
Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملA Modified Grey Wolf Optimizer by Individual Best Memory and Penalty Factor for Sonar and Radar Dataset Classification
Meta-heuristic Algorithms (MA) are widely accepted as excellent ways to solve a variety of optimization problems in recent decades. Grey Wolf Optimization (GWO) is a novel Meta-heuristic Algorithm (MA) that has been generated a great deal of research interest due to its advantages such as simple implementation and powerful exploitation. This study proposes a novel GWO-based MA and two extra fea...
متن کاملSpectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملComparative Evaluation of Symmetric SVD Algorithms for Real-time Face and Eye Tracking
Computation of singular value decomposition (SVD) has been a topic of concern by many numerical linear algebra researchers. Fast SVD has been a very effective tool in computer vision in a number of aspects, such as: face recognition, eye tracking etc. At the present state of the art fast and fixed-point power efficient SVD algorithm needs to be developed for real-time embedded computing. The wo...
متن کاملMinimizing Communication for Eigenproblems and the Singular Value Decomposition
Algorithms have two costs: arithmetic and communication. The latter represents the cost of moving data, either between levels of a memory hierarchy, or between processors over a network. Communication often dominates arithmetic and represents a rapidly increasing proportion of the total cost, so we seek algorithms that minimize communication. In [4] lower bounds were presented on the amount of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017